One- and two-page crossing numbers for some types of graphs
نویسندگان
چکیده
The simplest graph drawing method is that of putting the vertices of a graph on a line (spine) and drawing the edges as half-circles on k half planes (pages). Such drawings are called k-page book drawings and the minimal number of edge crossings in such a drawing is called the k-page crossing number. In a one-page book drawing, all edges are placed on one side of the spine, and in a two-page book drawing all edges are placed either above or below the spine. The one-page and two-page crossing numbers of a graph provide upper bounds for the standard planar crossing. In this paper, we derive the exact one-page crossing numbers for four-row meshes, present a new proof for the one-page crossing numbers of Halin graphs, and derive the exact two-page crossing numbers for circulant graphs Cn(1, b2 c). We also give explicit constructions of the optimal drawings for each kind of graphs.
منابع مشابه
META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملCrossing Minimisation Heuristics for 2-page Drawings
The minimisation of edge crossings in a book drawing of a graph G is one of important goals for a linear VLSI design, and the two-page crossing number of a graph G provides an upper bound for the standard planar crossing number. We propose several new heuristics for the 2-page drawing problem and test them on benchmark test sets like Rome graphs, Random Connected Graphs and some typical graphs....
متن کاملOn the crossing numbers of Cartesian products of stars and graphs of order six
The crossing number cr(G) of a graph G is the minimal number of crossings over all drawings of G in the plane. According to their special structure, the class of Cartesian products of two graphs is one of few graph classes for which some exact values of crossing numbers were obtained. The crossing numbers of Cartesian products of paths, cycles or stars with all graphs of order at most four are ...
متن کاملA Hopfield Neural Network Model for the Outerplanar Drawing Problem
In the outerplanar (other alternate concepts are circular or one-page) drawing, one places vertices of a n−vertex m−edge connected graph G along a circle, and the edges are drawn as straight lines. The minimal number of crossings over all outerplanar drawings of the graph G is called the outerplanar (circular, convex, or one-page) crossing number of the graph G. To find a drawing achieving the ...
متن کاملMETAHEURISTIC ALGORITHMS FOR MINIMUM CROSSING NUMBER PROBLEM
This paper presents the application of metaheuristic methods to the minimum crossing number problem for the first time. These algorithms including particle swarm optimization, improved ray optimization, colliding bodies optimization and enhanced colliding bodies optimization. For each method, a pseudo code is provided. The crossing number problem is NP-hard and has important applications in eng...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Comput. Math.
دوره 87 شماره
صفحات -
تاریخ انتشار 2010